Chemical genetic-mediated spatial regulation of protein expression in neurons reveals an axonal function for wld(s).

نویسندگان

  • Michael S Cohen
  • Ananda K Ghosh
  • Hyung Joon Kim
  • Noo Li Jeon
  • Samie R Jaffrey
چکیده

The degeneration of axons is the underlying pathological process of several neurological disorders. The Wallerian degeneration (Wld(S)) slow protein, which is primarily nuclear, markedly inhibits axonal degeneration. Contradictory models have been proposed to explain its mechanism, including a role in the nucleus, where it affects gene transcription, and roles outside the nucleus, where it regulates unknown effectors. To determine which pool of Wld(S) accounts for its axon-protective effects, we developed a strategy to control the spatial expression of proteins within neurons. This strategy couples a chemical genetic method to control protein stability with microfluidic culturing. Using neurons that are selectively deficient in Wld(S) in axons, we show that the axonal pool of Wld(S) is necessary for protection from axon degeneration. These results implicate an axonal pathway regulated by Wld(S) that controls axon degeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration.

Studies of naturally occurring mutant mice, wld(s), showing delayed Wallerian degeneration phenotype, suggest that axonal degeneration is an active process. We previously showed that increased nicotinamide adenine dinucleotide (NAD)-synthesizing activity by overexpression of nicotinamide mononucleotide adenylyltransferase (NMNAT) is the essential component of the Wld(s) protein, the expression ...

متن کامل

Mechanisms of Observed Neuroprotection of Dopaminergic Neurons in Wallerian Degeneration Slow (WldS) Mice

An emerging hypothesis in Parkinson's disease (PD) is that dopaminergic (DA) neurons degenerate through a " dying back " axonopathy wherein degeneration begins in the distal axon and progresses over time towards the cell body. Impaired axonal transport also appears to play an early, pivotal role in PD. Thus processes that delay axonal transport dysfunction and/or axonal degeneration might slow ...

متن کامل

Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress.

Axonal degeneration is a prominent feature of many neurological disorders that are associated with mitochondrial dysfunction, including Parkinson's disease, motor neuron disease, and inherited peripheral neuropathies. Studies of the Wld(s) mutant mouse, which undergoes delayed Wallerian degeneration in response to axonal injury, suggest that axonal degeneration is an active process. Wld(s) mice...

متن کامل

Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo.

Axonal degeneration is a key component of a variety of neurological diseases. Studies using wld(s) mutant mice have demonstrated that delaying axonal degeneration slows disease course and prolongs survival in neurodegenerative disease models. The Wld(s) protein is normally localized to the nucleus, and contains the N terminus of ubiquitination factor Ube4b fused to full-length Nmnat1, an NAD bi...

متن کامل

WldS Reduces Paraquat-Induced Cytotoxicity via SIRT1 in Non-Neuronal Cells by Attenuating the Depletion of NAD

Wld(S) is a fusion protein with NAD synthesis activity, and has been reported to protect axonal and synaptic compartments of neurons from various mechanical, genetic and chemical insults. However, whether Wld(S) can protect non-neuronal cells against toxic chemicals is largely unknown. Here we found that Wld(S) significantly reduced the cytotoxicity of bipyridylium herbicides paraquat and diqua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2012